dc.identifier.citation |
1] Acosta, M. D., Aguirre, F. J., and Rafael, P. A New Sufficient Condi tion for the Denseness of Norm Attaining Operators, Rocky Mountain Journal of Mathematics, 26(2), Spring 1996. [2] Acosta, M. D. Denseness of Norm Attaining Map pings, Rev. R. Acad. Cien. Serie A. Mat. 100, 9- 30.http://www.rac.es/ficheros/doc/00231.pdf, 2006. [3] Alnoor, O. F. A Note on Norm Attaining Operators, IOSR Journal of Mathematics (IOSR-JM), e-ISSN: 2278-5728, p-ISSN: 2319-765X. 14, 78-80, 2018. [4] Andreas, K. Fr´echet Spaces, Vienna, 442502, SS2016, Mo.+ Do.1005 − 1115 SR9, 2016. [5] Angela, C. C. Norm Attaining Operators; Results on Norm Attaining Operators, Master thesis, Universidad Autonoma de Madrid, 2015. [6] Bishop, E. and Phelps, R. R. A Proof that every Banach Space is Subreflexive, Bull. Amer. Math. Soc., 67(9798), 1961. [7] Bonet, J. and Lindsr¨om, M. Spaces of Operators between Fr´echet Spaces. Cambridge University Press, 115(1), 2008. [8] Dantas, S., Jung, M., Rold´an, O., and Zoca, A. R. Norm Attaining ´ Nuclear Operators, Zoominar, Argentina, 2020. [9] Dugundji, J. Topology, Allyn and Bacon Series in Advance Mathemat ics, Inc., Boston, 1966. [10] Enflo, P. A Counterexample to the Approximation Problem in Banach Spaces. 309-317, 1972. [11] Garret, P. Banach and Fr´echet Spaces of Functions, http://www.math.umn.edu./ garret/m/fun/notes-2012-13/02-spaces fcns.pdf, 2014. [12] Heil C. Metrics, Norms, Inner Products and Operator Theory (Applied and Numerical Harmonic Analysis), Springer International Publishing AG, part of Springer Nature, 2018. [13] Huff, R. E. Dentability and the Radon-Nikodym Property, Duke Math. J., 41, 11-114, 1974. [14] James, R. C. Reflexivity and the supremum of linear functionals, An nals of Mathematics, 66(1):159-169, (1957). [15] Johnson, J. and Wolfe, J. Norm Attaining Operators, Studia Math, 65, 7-19, 1979. 42 [16] Johnson, S. P. Norm Attaining Operators, 2020. [17] Ju Myung, K. and Bentuo, Z. History, Developments and Open Problems on Approximation Properties. Mathematics, 8(7),1117;https://doi.org./10.3390/math8071117, 2020. [18] Kadets, V., L´opez, G., Miguel, M., and Werner D. Norm Attaining Operators of Finite Rank, De Gruyter, 157-187, 2020. [19] Klaus, D. B. and Jos´e, B. Some Aspects of the Modern Theory of Fr´echet Spaces. Rev. R. Acad. Cien. Serie A. Mat., 97(2), 159-188, 2003. [20] Lim, T. Fixed points of Isometries on Weakly Compact Convex Sets. Anal. Appl. J. Math, 282(1):1-7, DOI:10.1016/S0022-24X(03)00398-6, 2003. [21] Lindestrauss, J. On Operators which attain their Norm, Israel J. Math; 1, 139-148, 1963. [22] Lomonosov, V. The Bishop-Phelps Theorem fails for Uniform Non-Self adjoint Dual Operator Algebras, J. Funct. Anal., 185, 214-219, 2001. [23] Martin, M. Norm Attaining Compact Operators, J. Funct. Anal. 267, 1585-1592, 2014. [24] Mogotu P. O., Okelo N. B. and Ongati O. On Compactness of Similarity Orbits of Norm-Attainable Operators, Int. J. Math and Appl., 7(2), 13- 21, 2019. [25] Mogotu P. O., Okelo N. B. and Ongati O. On Denseness of Similarity Orbits of Norm-Attainable Operators. Int. J. Appl Math and Mech. 6(4), 14-21 (ISSN: 2347-2529), 2019. [26] Narici, L., Beckenstein, E. Topological Vector Spaces. Pure and ap plied mathematics (Second ed.). Boca Raton, FL:CRC Press.ISBN 978- 1584888666.OCLC 144216834, 2011. [27] Okelo, N. B. On Norm-Attainable Operators in Banach Spaces, Hindawi, Journal of Function Spaces, Article ID 8926214, 1-6. http://doi.org./10.1155/2020/8926214, 2020. [28] Okelo, N. B. The Norm Attainability of some Elementary Operators. Applied Mathematics E-Notes, 13, 1-7, ISSN 1607-2510, 2012. [29] Oman, G. A short proof of the Bolzano-Weierstrass Theorem, The College Mathematics Journal, 2018. [30] Ondiej, K. Compact Spaces and their Applications in Banach Space Theory, Charles University in Prague, Faculty of Mathematics and Physics, Sokolovska’ 83, 186 75 Prague, Czech Republic, 1999. [31] Robert, A. V. Notes on Vector and Matrix Norms, Texas, 2014. [32] Uhl,J.J. Norm Attaining Operators on L1[0, 1] and the Radon-Nikodym Property, Pacific J. Math., 63, 293-300, 1976. 43 [33] Sokol, B. K. and Besnik, M. The Radon-Nikodym Property in Fr´echet Spaces, Math. Slovaca, 65(6), 1309-1318, 2016. [34] Venku, N. D. and Ramesh G. On Absolutely Norm Attaining Opera tors. Proc. Indian Acad. Sci (Math. Sci.)129:54, 2019. [35] Vogt D. Lectures on Fr´echet Spaces; Definition and basic properties, Bergische Universit¨at Wuppertal, Sommersemester, 2000. [36] Vogt D. Operators between Fr´echet Spaces. Fachbereich Mathematik, 20, 1987. [37] Wanjara, A. Rotundity on Norms in Fr´echet Spaces, URI: http://ir.sjooust.ac.ke:8080/xmlui/handle/123456789/8797, 2019. [38] Woo, C. H. Notes on Fr´echet Spaces, Internat. J. Math. and Math. Sci. 22(3), 659-665, S 0161-1712(99)22659-2, Electronic Publishing House, 1999. |
en_US |